Sex Modifies the Association between Diet Intake-Regulation Related Genes and BMI z-scores in Children

Ying Meng, PhD, RN1, Barbara Lohse, PhD, RD2, Leslie Cunningham-Sabo, PhD, RD3
1University of Rochester School of Nursing, 2Rochester Institute of Technology Wegmans School of Health & Nutrition, 3Colorado State University College of Health & Human Sciences

Background
• Excessive energy intake is a critical contributor to the development of childhood obesity.
• Genes involved in the brain eating regulatory systems (hypothalamus and food reward circuitry) may play a role in dietary intake and consequently weight gain.

Objective
The aim of this study was to assess the association between genetic variants mapped to three genes involved in the brain eating regulatory circuitry with the standardized BMI in school-age children.

- DRD2 (rs1800497) – Mesolimbic dopaminergic pathway
- CLOCK (rs1801260) – Circadian rhythms
- FTO (rs9939609) – Obesity

Methods
• Anthropometric measurements and genotypes were available in 121 school-age children in the Fuel for Fun (FFF) study.1
• FFF study is a multi-component, school- and family-based, cluster-randomized intervention trial (NCT02491294). The intervention is designed to improve culinary skills, dietary intake, and physical activity.
• Anthropometric measures were assessed at the baseline and 12-month follow-up.
• Age- and sex-specific standardized BMI scores (BMIZ) were calculated based on the growth chart developed by the US Centers for Disease Control and Prevention.
• The children’s DNA was obtained from buccal swab samples, and genotyping was performed by The Pennsylvania State University Genomics Core using the Thermo Fisher TaqMan assay (Thermo Fisher Scientific, CA, USA).
• Mixed-effects linear regression was applied to assess the genetic association and control clusters within families and schools.
• Covariates: age, sex, race, screen time, and intervention arms.

Table 1. Characteristics of the FFF Youth Participants (n=121)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Baseline</th>
<th>12-month follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overweight (BMI percentile ≥85)</td>
<td>14%</td>
<td>29%</td>
</tr>
<tr>
<td>Age mean (s.d.)</td>
<td>9 (0.5)</td>
<td>10 (0.3)</td>
</tr>
<tr>
<td>Boys</td>
<td>56%</td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>81%</td>
<td></td>
</tr>
<tr>
<td>Screen time (hr/day)</td>
<td>3.4/2.5</td>
<td>3.2/2.1</td>
</tr>
<tr>
<td>Intervention</td>
<td>50%</td>
<td></td>
</tr>
</tbody>
</table>

Results
- Obesity affected 6% children at baseline and 17% at the 12-month follow-up.
- rs9939609 at FTO (AG vs. GG alleles, p=0.039) was significantly associated with the follow-up BMIZ scores (Figure 1).
- Sex significantly modified the associations of BMIZ at baseline with loci at the DRD2 (p=0.047), CLOCK (p=0.029), and FTO (p=0.034) genes (Figure 2-4).
- At the follow-up, sex significantly modified the associations of BMIZ with loci at the CLOCK (p=0.039) and NR3C1 (p=0.015) genes (Figure 5).
- Function analysis of the three variants indicates that the variants located within DRD2 and NR3C1 are missense variants and the variants located within DRD2 and CLOCK are gene expression quantitative trait loci (eQTL).
- Gene function analysis indicates that DRD2 is involved in the food reward circuitry.2 CLOCK is associated with sleep duration and potentially dietary intake.3,4 NR3C1 plays a role in stress and may be associated with stress eating behavior.5

Conclusion
• Our results indicated that sex could be a critical modifier for the relationship between potential eating regulatory genes and body weight in children.
• Further investigation is warranted to delineate the relationship between sex hormones and eating regulatory circuitry.

Acknowledgments
The presented work had financial support from USDA NIFA AFRI grant 201268001. The authors had no financial relationships with any organizations that might have an interest in the presented work in the previous three years; no other relationships or activities that could appear to have influenced the presented work. Kathryn Z. Faulring, MPH, CHES for poster design and preparation.

References